54,582 research outputs found

    Electric dipole response of 6^6He: Halo-neutron and core excitations

    Get PDF
    Electric dipole (E1E1) response of 6^{6}He is studied with a fully microscopic six-body calculation. The wave functions for the ground and excited states are expressed as a superposition of explicitly correlated Gaussians (CG). Final state interactions of three-body decay channels are explicitly taken into account. The ground state properties and the low-energy E1E1 strength are obtained consistently with observations. Two main peaks as well as several small peaks are found in the E1E1 strength function. The peak at the high-energy region indicates a typical macroscopic picture of the giant dipole resonance, the out-of-phase proton-neutron motion. The transition densities of the lower-lying peaks exhibit in-phase proton-neutron motion in the internal region, out-of-phase motion near the surface region, and spatially extended neutron oscillation, indicating a soft-dipole mode (SDM) and its vibrationally excited mode.Comment: 12 pages, 12 figures, to appear in Phys. Rev.

    Green's function method for strength function in three-body continuum

    Full text link
    Practical methods to compute dipole strengths for a three-body system by using a discretized continuum are analyzed. New techniques involving Green's function are developed, either by correcting the tail of the approximate wave function in a direct calculation of the strength function or by using a solution of a driven Schroedinger equation in a summed expression of the strength. They are compared with the complex scaling method and the Lorentz integral transform, also making use of a discretized continuum. Numerical tests are performed with a hyperscalar three-body potential in the hyperspherical-harmonics formalism. They show that the Lorentz integral transform method is less practical than the other methods because of a difficult inverse transform. These other methods provide in general comparable accuracies.Comment: 22 pages, 8 figures, to appear in Progress of Theoretical Physic

    p-Wave superfluid and phase separation in atomic Bose-Fermi mixture

    Full text link
    We consider a system of repulsively interacting Bose-Fermi mixtures of spin polarized uniform atomic gases at zero temperature. We examine possible realization of p-wave superfluidity of fermions due to an effective attractive interaction via density fluctuations of Bose-Einstein condensate within mean-field approximation. We find the ground state of the system by direct energy comparison of p-wave superfluid and phase-separated states, and suggest an occurrence of the p-wave superfluid for a strong boson-fermion interaction regime. We study some signatures in the p-wave superfluid phase, such as anisotropic energy gap and quasi-particle energy in the axial state, that have not been observed in spin unpolarized superfluid of atomic fermions. We also show that a Cooper pair is a tightly bound state like a diatomic molecule in the strong boson-fermion coupling regime and suggest an observable indication of the p-wave superfluid in the real experiment.Comment: 7 pages, 6 figur

    Transverse momentum distribution with radial flow in relativistic diffusion model

    Get PDF
    Large transverse momentum distributions of identified particles observed at RHIC are analyzed by a relativistic stochastic model in the three dimensional (non-Euclidean) rapidity space. A distribution function obtained from the model is Gaussian-like in radial rapidity. It can well describe observed transverse momentum pTp_T distributions. Estimation of radial flow is made from the analysis of pTp_T distributions for pˉ\bar{p} in Au + Au Collisions. Temperatures are estimated from observed large pTp_T distributions under the assumption that the distribution function approaches to the Maxwell-Boltzmann distribution in the lower momentum limit. Power-law behavior of large pTp_T distribution is also derived from the model.Comment: 7 pages, 5 figures and 6 table

    Universal four-body states in heavy-light mixtures with positive scattering length

    Full text link
    The number of four-body states known to behave universally is small. This work adds a new class of four-body states to this relatively short list. We predict the existence of a universal four-body bound state for heavy-light mixtures consisting of three identical heavy fermions and a fourth distinguishable lighter particle with mass ratio κ9.5\kappa \gtrsim 9.5 and short-range interspecies interaction characterized by a positive s-wave scattering length. The structural properties of these universal states are discussed and finite-range effects are analyzed. The bound states can be experimentally realized and probed utilizing ultracold atom mixtures.Comment: 5 page

    Global-in-time behavior of the solution to a Gierer-Meinhardt system

    Get PDF
    Gierer-Meinhardt system is a mathematical model to describe biological pattern formation due to activator and inhibitor. Turing pattern is expected in the presence of local self-enhancement and long-range inhibition. The long-time behavior of the solution, however, has not yet been clarified mathematically. In this paper, we study the case when its ODE part takes periodic-in-time solutions, that is, τ=s+1\tau=s+1. Under some additional assumptions on parameters, we show that the solution exists global-in-time and absorbed into one of these ODE orbits. Thus spatial patterns eventually dis- appear if those parameters are in a region without local self-enhancement or long-range inhibition

    Inelastic final-state interaction

    Get PDF
    The final-state interaction in multichannel decay processes is sytematically studied with application to B decay in mind. Since the final-state inteaction is intrinsically interwoven with the decay interaction in this case, no simple phase theorem like "Watson's theorem" holds for experimentally observed final states. We first examine in detail the two-channel problem as a toy-model to clarify the issues and to remedy common mistakes made in earlier literature. Realistic multichannel problems are too challenging for quantitative analysis. To cope with mathematical complexity, we introduce a method of approximation that is applicable to the case where one prominant inelastic channel dominates over all others. We illustrate this approximation method in the amplitude of the decay B to pi K fed by the intermediate states of a charmed meson pair. Even with our approximation we need more accurate information of strong interactions than we have now. Nonethless we are able to obtain some insight in the issue and draw useful conclusions on general fearyres on the strong phases.Comment: The published version. One figure correcte

    Three-body forces and shell structure in calcium isotopes

    Full text link
    Understanding and predicting the formation of shell structure from nuclear forces is a central challenge for nuclear physics. While the magic numbers N=2,8,20 are generally well understood, N=28 is the first standard magic number that is not reproduced in microscopic theories with two-nucleon forces. In this Letter, we show that three-nucleon forces give rise to repulsive interactions between two valence neutrons that are key to explain 48Ca as a magic nucleus, with a high 2+ excitation energy and a concentrated magnetic dipole transition strength. The repulsive three-nucleon mechanism improves the agreement with experimental binding energies.Comment: 5 pages, 4 figures; improved version and added coupled-cluster benchmark; published versio
    corecore